นสามเหลี่ยมมุมฉากใด ๆ พื้นที่ของสี่เหลี่ยมจัตุรัสที่มีด้านเป็นด้านตรงข้ามมุมฉาก เท่ากับผลรวมพื้นที่ของสี่เหลี่ยมจัตุรัสที่มีด้านเป็นด้านประชิดมุมฉากของสามเหลี่ยมมุมฉากนั้น
ทฤษฎีบทดังกล่าวสามารถเขียนเป็นสมการสัมพันธ์กับความยาวของด้าน a, b และ c ได้ ซึ่งมักเรียกว่า สมการพีทาโกรัส ดังด้านล่าง[1]
{\displaystyle a^{2}+b^{2}=c^{2}\!\,}{\displaystyle a^{2}+b^{2}=c^{2}\!\,} (อาจแทนด้วยตัวแปรอื่นเช่น x, y, z, ก, ข, ค)
โดยที่ c เป็นความยาวด้านตรงข้ามมุมฉาก และ a และ b เป็นความยาวของอีกสองด้านที่เหลือ
ทฤษฎีบทพีทาโกรัสตั้งตามชื่อนักคณิตศาสตร์ชาวกรีก พีทาโกรัส ซึ่งถือว่าเป็นผู้ค้นพบทฤษฎีบทและการพิสูจน์[2][3] แม้จะมีการแย้งบ่อยครั้งว่า ทฤษฎีบทดังกล่าวมีมาก่อนหน้าเขาแล้ว มีหลักฐานว่านักคณิตศาสตร์ชาวบาบิโลนเข้าใจสมการดังกล่าว แม้ว่าจะมีหลักฐานหลงเหลืออยู่น้อยมากว่าพวกเขาปรับให้มันพอดีกับกรอบคณิตศาสตร์[4][5]
ทฤษฎีบทดังกล่าวเกี่ยวข้องกับทั้งพื้นที่และความยาว ทฤษฎีบทดังกล่าวสามารถสรุปได้หลายวิธี รวมทั้งปริภูมิมิติที่สูงขึ้น ไปจนถึงปริภูมิที่มิใช่แบบยูคลิด ไปจนถึงวัตถุที่ไม่ใช่สามเหลี่ยมมุมฉาก และอันที่จริงแล้ว ไปจนถึงวัตถุที่ไม่ใช่สามเหลี่ยมเลยก็มี แต่เป็นทรงตัน n มิติ ทฤษฎีบทพีทาโกรัสดึงดูดความสนใจจากนักคณิตศาสตร์เป็นสัญลักษณ์ของความยากจะเข้าใจในคณิตศาสตร์ ความขลังหรือพลังปัญญา มีการอ้างถึงในวัฒนธรรมสมัยนิยมมากมายทั้งในวรรณกรรม ละคร ละครเพลง เพลง สแตมป์และการ์ตูน
รูปอื่นตามที่ได้กล่าวไปแล้วข้างต้น หาก c แทนความยาวด้านตรงข้ามมุมฉาก และ a และ b แทนความยาวของอีกสองด้านที่ประกบมุมฉาก ทฤษฎีบทพีทาโกรัสจะสามารถเขียนในรูปสมการพีทาโกรัสได้ดังนี้
{\displaystyle a^{2}+b^{2}=c^{2}\,}{\displaystyle a^{2}+b^{2}=c^{2}\,}
หรือ
{\displaystyle c={\sqrt {a^{2}+b^{2}}}\,}{\displaystyle c={\sqrt {a^{2}+b^{2}}}\,}
ถ้าทราบความยาวด้านตรงข้ามมุมฉาก c และด้านประชิดมุมฉากด้านใดด้านหนึ่ง (a หรือ b) แล้ว ความยาวด้านที่เหลือสามารถคำนวณได้ดังนี้
{\displaystyle a={\sqrt {c^{2}-b^{2}}}\,}{\displaystyle a={\sqrt {c^{2}-b^{2}}}\,}
หรือ
{\displaystyle b={\sqrt {c^{2}-a^{2}}}\,}{\displaystyle b={\sqrt {c^{2}-a^{2}}}\,}
ทฤษฎีบทพีทาโกรัสกำหนดความสัมพันธ์ของด้านทั้งสามของสามเหลี่ยมมุมฉากอย่างง่าย เพื่อที่ว่าถ้าทราบความยาวของด้านสองด้าน ก็จะสามารถหาความยาวของด้านที่เหลือได้ อีกบทแทรกหนึ่งของทฤษฎีบทพีทาโกรัสคือ ในสามเหลี่ยมมุมฉากใด ๆ ด้านตรงข้ามมุมฉากจะยาวกว่าสองด้านที่เหลือ แต่สั้นกว่าผลรวมของทั้งสอง
ทฤษฎีบทดังกล่าวสามารถกล่าวโดยสรุปได้เป็นกฎของโคซายน์ ซึ่งเมื่อให้ความยาวของด้านทั้งสองและขนาดของมุมระหว่างด้านนั้นมา จะสามารถคำนวณหาความยาวด้านที่สามของสามเหลี่ยมใด ๆ ได้ ถ้ามุมระหว่างด้านเป็นมุมฉาก กฎของโคซายน์จะย่อลงเหลือทฤษฎีบทพีทาโกรัส
|